Die Transformation hin zur Kreislaufwirtschaft ist in vollem Gange. Bei Rohstoffen wie Aluminium aus Verpackungen oder Papier liegen die Recyclingquoten bereits bei über 90 %. Um weitere Stoffkreisläufe schließen zu können, braucht die Recyclingbranche allerdings sensorbasierte Verfahren, die Wertstoffe in Abfallströmen vollautomatisiert, zuverlässig und zugleich mit hohem Tempo und hoher Differenzierung identifizieren.
Echte Recycling-Quoten immer noch zu gering
Ein grundlegendes Ziel der Kreislaufwirtschaft ist es, wertvolle Rohstoffe – wenn irgend möglich – ohne Downcycling wiederzuwenden. Die wichtigste Voraussetzung dafür ist die sortenreine Trennung. Doch exakt hier gibt es in vielen Fällen noch technologische Lücken. So gilt Deutschland zwar beispielsweise beim Umsetzen der EG-Altfahrzeug-Richtlinie als vorbildlich und hält die vorgegebene Recyclingquote für Altfahrzeuge von 95 % ein; im aktuellen Berichtsjahr (2021) lag sie bei 97,5 %. Allerdings beinhaltet diese Quote neben dem stofflichen auch das energetische Recycling – also das Verbrennen von Materialien, die nicht recyclingfähig sind oder bei denen sich die Rückgewinnungsprozesse bis hin zur Wiederverwendung nicht rechnen. Energetisch verwertet dienen sie zumindest noch der Strom- und Wärmeerzeugung.
Von jenen 97,5 % der verwerteten Altfahrzeugmasse konnten nach Angaben des Umweltbundesamts (UBA) zuletzt 86,6 % stofflich verwertet werden. Doch auch hier gibt es Verbesserungsbedarf. So bemängelt das UBA, dass das stoffliche Recycling allzu oft zum „Downcycling“ führt: Zurückgewonnene Sekundärmaterialien kommen in Anwendungen zum Einsatz, die nicht ihrem ursprünglichen Wert entsprechen. So wird hochwertiger Autostahl aus Autos oft als Baustahl wiederverwendet. Wertvolles Autoglas endet aufgrund schwer abtrennbarer Beschichtungen oft als Dämmmaterial oder Füllmaterial für Deponien. Bei nichtmetallischen Materialien ist das werterhaltende Recycling eher die Ausnahme: lediglich 13,5 % der Kunststoffe und 8,3 % des Glases werden laut UBA überhaupt stofflich verwertet.
Laserbasierte Sensorik hilft, die Stoffkreisläufe zu schließen
Das Fraunhofer ILT hält eine Lösung bereit, die das Recycling erheblich verbessern und das verlustreiche Downcycling durch hocheffiziente, zuverlässige und differenzierte Analysen der in Abfallströmen enthaltenen Wertstoffe minimieren kann: die Laser-Induced Breakdown Spectroscopy (LIBS, deutsch Laser-Emissionsspektroskopie) gehört zu den Schlüsseltechnologien für eine auf tatsächlichen Stoffkreisläufen basierenden Wirtschaft. Denn die hochgenaue, in Echtzeit mögliche spektroskopische Bestimmung, welche chemischen Elemente Materialien enthalten, erlaubt eine differenzierte sortenreine Trennung.
Für die Spektroskopie regt ein hochenergetischer Laserpuls die Oberfläche des Materials an. Dabei bildet sich ein Plasma, in dem die chemischen Verbindungen der Elemente des Materials aufgebrochen werden. Der atomare Fingerabdruck unterscheidet sich bei jedem Material und lässt sich in dem Moment spektroskopisch auslesen, in dem die Atome wieder in ihren stabilen Zustand zurückkehren. Denn dabei emittieren sie Licht in spezifischen Wellenlängen, von denen sich auf das jeweilige Element schließen lässt. In Sekundenbruchteilen legt LIBS also die exakte chemische Zusammensetzung des laserangeregten Materials offen. Das berührungslose Verfahren lässt sich auf alle Materialien anwenden, egal ob es sich um Feststoffe, Flüssigkeiten oder Gase handelt.
Die Arbeitsgruppe Materialanalytik um Dr. Cord Fricke-Begemann treibt am Fraunhofer ILT die Entwicklung von Inline-Verfahren auf Basis der LIBS-Technologie voran, um den Weg zu einer sortenreinen Rückgewinnung von Metallen aus Müll- und Schrottbergen zu ebnen. „Anhand einer scanner-basierten Auswahl an Messpunkten und rund 100 LIBS-Messungen pro Sekunde können wir sehr schnell zweidimensionale Darstellungen der Elementverteilung erstellen. Auf Basis dieser ortsaufgelösten Analysen gelingt es uns, Technologiemetalle in Elektroschrott aufzuspüren und so beispielsweise wertvolles Tantal aus Kondensatoren in den Wertstoffkreislauf zurückzuführen“, erklärt der Fraunhofer ILT-Wissenschaftler.
Aluminium-Recycling: Laser sorgt für höhere Sortenreinheit
Gerade bei komplexen Materialzusammensetzungen – wie im Fall von Elektroschrott oder Altfahrzeugen – steht und fällt das Eins-zu-eins-Recycling mit der genauen, fein ortsaufgelösten Bestimmung und Trennung der einzelnen Materialfraktionen. Denn nur wenn es Recyclingunternehmen möglich wird, exakte chemische Zusammensetzungen in Echtzeit zu ermitteln und Abfälle auf dieser Basis zu sortieren, ist eine effiziente Wiederverwendung ohne Downcycling machbar.
LIBS legt durch die berührungslose, laserbasierte Quasi-Echtzeit-Analyse der Materialien die Basis für das automatisierte, sortenreine Trennen vielfältiger Metalllegierungen. Diese erhalten für Anwender ihre produktspezifische Einsatzfähigkeit – und damit ihren vollen Wert. Das gilt sowohl für hochwertige Metalle in Elektroschrott wie für Sonderlegierungen im Werkzeugbau oder die im Automobilbau auf breiter Front eingesetzten Aluminium-Knetlegierungen.
Die differenzierte Wertstoffanalyse per Laser-Emissionsspektrometrie ist aber nicht nur die Basis für tatsächlich geschlossene Stoffströme ohne Downcycling. Darüber hinaus ebnet sie den Weg zu beschleunigten Sortierprozessen und trägt in Verbindung mit automatisierter Sortiertechnik zu deren Wirtschaftlichkeit bei. „Wir können in kürzerer Zeit viel mehr Schrott verarbeiten als in einer klassischen Handsortierung und erzielen obendrein echte Sortenreinheit“, fasst Fricke-Begemann die Vorteile zusammen.
Diese hat das Institut mit der Cronimet Ferroleg GmbH aus Karlsruhe im Förderprojekt PLUS mit Förderung des Bundesministeriums für Bildung und Forschung (BMBF) zur Grundlage eines neuartigen Verfahrens gemacht, das die laserbasierte Analyse für eine spezielle Schrottart in Stellung bringt. „Es handelt sich um verschlissene Werkzeuge zum Bohren, Drehen und Fräsen, die in Industrie separat gesammelt werden. Unser Projekt hat die darin verarbeiteten Sonderlegierungen adressiert“, berichtet Fricke-Begemann. Diese sind aufgrund hoher Kobalt-, Molybdän- und Wolframanteile wertvoll – und für das sortenreine Recycling besonders interessant. Denn wirklich sortenrein lassen sie sich wie alle Metalle ohne Qualitätseinbußen beliebig oft einschmelzen und erneut zu hochwertigen Zerspanungswerkzeugen verarbeiten.
Im Förderprojekt konnten die Projektpartner den Nachweis dafür erbringen und die Zuverlässigkeit der LIBS-Analytik unter Beweis stellen. Letztlich gelang es ihnen, die sortenreine Trennung durch das Zusammenspiel von LIBS und Robotik zu automatisieren und stark zu beschleunigen. Selbst in winzigen Schrottteilen identifiziert das spektroskopische Verfahren mehr als 20 unterschiedliche Legierungselemente; der Roboter greift und sortiert sie entsprechend. Es ist die Blaupause für jenes vollautomatisierte Recycling, das entscheidend zur Wirtschaftlichkeit von Recyclingprozessen beitragen kann.
Laser als Detektiv
Auch beim Recycling von Batterien, das wegen der Elektrifizierung im Mobilitätssektor und dem stark zunehmenden hohen stationären Speicherbedarf unverzichtbar ist, kann LIBS eine Schlüsselrolle spielen. Seit Herbst 2022 läuft mit ACROBAT ein internationales Projekt, das den Recyclinganteil von Lithium-Eisenphosphat-Batterien (LFP-Batterien) bis 2030 auf mehr als 90 % der enthaltenen kritischen Rohstoffe steigern soll. Bislang fehlt es an praktikablen Lösungen, um Rohstoffe wie Lithium, Phosphor und Grafit aus den Anoden und Kathoden der Batteriezellen zurückzugewinnen. „Mit LIBS haben wir einen erprobten Ansatz, mit dem wir jeweils die Menge, Reinheit und Verteilung der enthaltenen Werts
toffe messen und geeignete Strategien für ihre Wiederaufbereitung daraus ableiten zu können“, berichtet Fricke-Begemann.
Die gezielte Kombination von LIBS mit digitalen Technologien wie Digitalen Zwillingen oder Künstlicher Intelligenz (KI) und Machine Learning eröffnet der Recyclingbranche ganz neue Möglichkeiten. „Insbesondere der Einsatz von KI ist aufgrund der Vielfalt an Materialien, der aufkommenden Datenmengen und der Geschwindigkeit, in der die Klassifizierung der Materialien im laufenden Prozess erfolgen muss, vielversprechend“, sagt Fricke-Begemann. Zumal absehbar sei, dass die Aufgabenstellungen der Branche mit der fortschreitenden Transformation hin zur Kreislaufwirtschaft immer komplexer werden. Um nicht nur in vorsortierten Industrieabfällen, sondern perspektivisch auch im Hausmüll Wertstoffe für die Wiederverwertung aufzuspüren und zu sichern, könnte sich die Kombination von LIBS und KI-Werkzeugen als echter Game-Changer erweisen. Dies auch, weil entsprechend trainierte KI-Algorithmen in der Lage sind, Datenströme mehrerer parallel arbeitender optischer Sensoren zu verarbeiten. Das würde das Tor zu einer hohen Sortiergenauigkeit bei höchsten Prozessgeschwindigkeiten aufstoßen.
KI und LIBS als Wegbereiter einer echten Kreislaufwirtschaft
Die Fachleute in Aachen nutzen die innovative Kombination der LIBS-Technologie mit 3D-Sensorik, um die exakte Position und Orientierung wertstoffhaltiger Materialien im Raum zu bestimmen. „So wissen wir genau, wohin wir den Laserstrahl lenken müssen, um die Materialbestimmung durchzuführen“, erläutert der Fraunhofer ILT-Experte. Innerhalb von Sekundenbruchteilen liegen dann detaillierte Informationen zur Lage, Qualität und zur exakten chemischen Zusammensetzung der jeweiligen Abfälle vor. Durch begleitende Regulatorik wie den digitalen Produktpass steigt künftig die Transparenz über die entlang der oft globalen Lieferketten eingesetzten Materialien zusätzlich.
Die Transformation hin zur Kreislaufwirtschaft bleibt dennoch eine Herkulesaufgabe. „Wir werden 2030 in der Lage sein, sehr viel mehr Substanzen zu erfassen“, ist sich Fricke-Begemann sicher. Doch ob es bis dahin gelingen wird, wertvolle Rohstoffe aus Altfahrzeugen, Elektroschrott und anderem Abfallströmen tatsächlich komplett zu recyceln und die entsprechenden Stoffkreisläufe zu schließen, sei fraglich. Doch LIBS weise in die richtige Richtung und könnte sich als Enabler echter Kreislaufprozesse ohne Downcycling erweisen.